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Does the transverse electric zero mode contribute to the Casimir effect for a metal?
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The finite-temperature Casimir free energy, entropy, and internal energy are considered anew for a conven-
tional parallel-plate configuration, in the light of current discussions in the literature. In the case of an ‘‘ideal’’
metal, characterized by a refractive index equal to infinity for all frequencies, we recover, via a somewhat
unconventional method, conventional results for the temperature dependence, meaning that the zero-frequency
transverse electric mode contributes the same as the transverse magnetic mode. For a real metal, however,
approximately obeying the Drude dispersive model at low frequencies, we find that the zero-frequency trans-
verse electric mode does not contribute at all. This would appear to lead to an observable temperature depen-
dence and a violation of the third law of thermodynamics. It had been suggested that the source of the difficulty
was the behavior of the reflection coefficient for perpendicular polarization but we show that this is not the
case. By introducing a simplified model for the Casimir interaction, consisting of two harmonic oscillators
interacting via a third one, we illustrate the behavior of the transverse electric field. Numerical results are
presented based on the refractive index for gold. A linear temperature correction to the Casimir force between
parallel plates is indeed found which should be observable in room-temperature experiments, but this does not
entail any thermodynamic inconsistency.
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I. INTRODUCTION

In spite of the numerous treatises on the Casimir eff
during the past decade—for some books and review pa
see, for instance, Milton@1#, Mostepanenko and Trunov@2#,
Milonni @3#, Plunienet al. @4#, Bordaget al. @5#—it is some-
what surprising that such a basic issue as the tempera
dependence of this effect is still unclear and has rece
given rise to a lively discussion. This issue is not restricted
the case of curvilinear geometry, but is present even in
simplest conventional geometry of two parallel metal pla
separated by a gap of widtha. Thus Klimchitskaya and
Mostepanenko in their detailed investigation@6#, and also
Bordaget al. @7#, and Fischbachet al. @8#, have argued tha
the Drude dispersion relation for a frequency-dispersive m
dium leads to inconsistencies in the sense that the reflec
coefficient r 2 for perpendicular polarization~the TE mode!
becomes discontinuous as the imaginary frequencyz5
2 iv goes to zero. As is well known, the Drude dispersi
relation reads for imaginary frequencies

«~ i z!511
vp

2

z~z1n!
, ~1.1!
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where vp is the plasma frequency andn is the relaxation
frequency.~Usually, n is taken to be a constant, equal to i
room-temperature value.! The mentioned authors, instead
the Drude relation, give preference to the plasma dispers
relation, since no such discontinuity is then encountered.~In
Ref. @9#, the plasma relation together with the so-called s
face impedance approach is argued to be the method
suited to describe the thermal Casimir force between
metals.! The plasma relation is

«~ i z!511
vp

2

z2
. ~1.2!

The arguments in Refs.@6–9# are interesting, since they rais
doubts not only about the applicability of the Drude model
such, but even more, doubt about the applicability of
fundamental Lifshitz formula at low temperatures~see, for
instance, Ref.@10#!.

The essence of the problem appears to be the follow
For a metal, does the transverse electric~TE! mode contrib-
ute to the Casimir effect in the limit of zero frequency, co
responding to Matsubara integerm50? It is precisely for
this mode that the purported discontinuity of the reflecti
coefficientr 2, mentioned above, can occur. The problem
most acute in the highT regime~the m50 contribution be-
comes increasingly important asT increases!, but is present
at moderate and low temperatures as well. The conventio
recipe for handling the two-limit problem for a metal,n
©2003 The American Physical Society16-1
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5A«→`, m→0, has been to take the limits in the followin
order: ~1! Set first«5`, ~2! then take the limitm50.

This way of proceeding was advocated in the early pa
of Schwinger, DeRaad, and Milton@11# ~we will call it the
SDM prescription!, and was followed also in one of the re
cent papers by some of the current authors@12#, and in Ref.
@1#. It seems to have escaped recent notice that the phy
basis for this prescription, namely, the necessity of enforc
the correct electrostatic boundary conditions, was explic
stated in Ref.@11#.

Boström and Sernelius@13# seem to have been the first
inquire whether this prescription is right: They argued tha
view of a realistic dispersion relation at low frequencies
m50 TE mode shouldnot contribute. And three of the
present authors arrived recently at the same conclusion
two papers dealing with the case of two concentric spher
surfaces@14,15#.

The Bostro¨m-Sernelius paper gave rise to a heated deb
in the literature@7,16–18# on the role of them50 TE mode
for a metal. The advent of accurate experiments in rec
years, by Lamoreaux@19#, Mohideen and co-workers@20–
23#, Ederth@24#, Chanet al. @25#, and Bressiet al. @26# ~cf.
also the recent review paper of Lambrecht and Reyn
@27#!, represents important progress in this field. Especi
the experiment of Bressiet al. is of interest in the presen
context, since it deals directly with the Casimir force b
tween metal surfaces that are parallel, and so avoids us
complicating factors such as the proximity force theor
@28#, which nevertheless seems well understood. This exp
ment is fraught with experimental difficulties~related to
keeping the plates sufficiently parallel!, so the accuracy is
claimed by the authors to be moderate~15%!, but it is to be
hoped that this accuracy will soon be improved. Seve
other related papers have appeared recently, discussin
interpretation of the mentioned experiments as well as m
general aspects of finite temperature Casimir theory@29–35#.

Our purpose in the present paper is to analyze the Cas
temperature problem anew, assuming conventional para
plate geometry from the outset, therewith avoiding t
spherical Bessel functions that become necessary if sphe
geometry is contemplated. In particular, we will focus atte
tion on them50 TE mode. Let us summarize our results

It is useful to distinguish between two different classes
metals. The first class, which we will call ‘‘ideal’’ metals, i
characterized by a refractive indexn5A«5` for all fre-
quencies. It implies that the reflection coefficientr 2 men-
tioned above is unity for allz. This corresponds to the tra
ditional recipe 1 and 2 above when handling the two-lim
problem for metals. It means that them50 TE mode con-
tributes to the Casimir force just the same amount as does
transverse magnetic~TM! mode.

The obvious drawback of this ideal metal is that it do
not occur in nature. And this brings us to the second cla
which is the one of real metals, in which case we must
serve an appropriate dispersion relation, especially at
frequencies. It is most commonly assumed that the most
propriate dispersion whenz→0 is the Drude relation, Eq
~1.1!. As we will show, the Drude model implies that them
50 TE mode doesnot contribute. The totalm50 free en-
05611
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ergy for a real metal becomes accordingly one-half of
conventional expression. In contradistinction to recent sta
ments in the literature@6–8# we find that there exists no
physical difficulty or ambiguity associated with the vanis
ing coefficientr 2 at z50. This is so becauser 2 goes to zero
smoothly whenz→0, as long as the transverse wave vec
k' is nonvanishing.~If k' is precisely zero, there occurs
singularity in the reflection coefficient, but this has no phy
cal importance since this point is of measure zero in
integral overk' .) Our present results are in agreement w
Refs.@14,15#, as well as with Bostro¨m and Sernelius@13#.

A different view has recently been put forward by Tor
erson and Lamoreaux@36#. They argue that the Drude-mode
behavior does not accurately represent the TE zero m
which necessarily has a vanishing tangential componen
the electric field at the surface of a perfect conductor. Th
point to the necessity of taking the finite thickness of t
metallic coatings into account. Their arguments seem to
ply that the conventional temperature dependence is cor
However, in our opinion electrostatic considerations of t
kind do not solve the zero-temperature problem; what is
quired to incorporate temperature dependence is an ana
continuation into imaginary frequencies of Green’s functio
referring to nonzero wave number.

Before embarking on the calculations let us emphasize
following point: The occurrence of them50 mode only
once instead of twice is understandable physically. T
mode is precisely the TM static mode, corresponding to
electric field being perpendicular to the two metal plates. I
the natural ground-state mode present whenz50. Actually,
in Sec. III of Ref.@12# we showed how the uniqueness of th
static mode emerges naturally, using statistical mechan
considerations.

The outline of our paper is the following. In the followin
section we show why the exclusion of the TE zero mo
seems to lead to an observable temperature correction to
force between real metal plates, and worse, seems to imp
violation of the third law of thermodynamics. In Sec. III w
expand on the situation of an ideal metal in the sense
scribed above, and calculate the Casimir free energy, entr
and internal energy via a somewhat unconventional ro
Equivalence with earlier results is demonstrated. In Sec.
we introduce a simplified model to illustrate the Casim
problem, based essentially on statistical mechanics. In
model the system is replaced by two harmonic oscillat
~the two media! that interact via a third oscillator~the elec-
tromagnetic field!. Depending upon the form of the interac
tion we then have two situations. The first is the one wh
the induced interaction~or free energy!, which is negative,
increases linearly in magnitude with temperature in the c
sical limit. The other situation, which is more unexpected
where the induced interaction vanishes in the classical lim
These two situations can be regarded as analogous to
behavior of the TM and TE modes. We also conside
strongly simplified case of real metals, and show how in su
a case the contribution to the entropy goes to zero smoo
as T→0. Arguing on basis of the Euler-Maclaurin formu
we find this to be a general property~except in the idealized
metal limit!. We then go on to present numerical resu
6-2
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based on the dispersion relation for gold, and obtain res
qualitatively in accord with our analytical model. In the Ap
pendixes the smoothness of the reflection coefficientr 2, and
of the TE Green’s function, in the limitz→0 is explicitly
demonstrated. We also discuss the temperature depend
of the relaxation frequency,n(T). We conclude that a linea
temperature dependence should be observable in ro
temperature experiments.

In this paper we use natural units,\5c5kB51.

II. TEMPERATURE EFFECT FOR METAL PLATES

We begin by reviewing how temperature effects are inc
porated into the expression for the force between para
dielectric~or conducting! plates separated by a distancea. To
obtain the finite-temperature Casimir force from the ze
temperature expression, one conventionally makes the
lowing substitution in the imaginary frequency:

z→zm5
2pm

b
, ~2.1a!

and replaces the integral over frequencies by a sum,

E
2`

` dz

2p
→ 1

b (
m52`

`

. ~2.1b!

This reflects the requirement that thermal Green’s functi
be periodic in imaginary time with periodb @37#. Suppose
we write the finite-temperature force per area as@for the
explicit form, see Eq.~3.1! below#

F T5 (
m50

`

8 f m , ~2.2!

where the prime on the summation sign means that thm
50 term is counted with half weight. To get the low
temperature limit, one can use the Euler-Maclaurin~EM!
sum formula

(
k50

`

f ~k!5E
0

`

f ~k!dk1
1

2
f ~0!2 (

q51

`
B2q

~2q!!
f (2q21)~0!,

~2.3!

whereBn is thenth Bernoulli number. This means here, wi
half weight for them50 term,

F T5E
0

`

f ~m!dm2
1

2
f ~0!1

1

2
f ~0!2 (

k51

`
B2k

~2k!!
f (2k21)~0!.

~2.4!

It is noteworthy that the terms involvingf (0) cancel in Eq.
~2.4!. The reason for this is that the EM formula equates
integral to its trapezoidal-rule approximation plus a series
corrections; thus the 1/2 form50 in Eq. ~2.2! is built-in
automatically. For a perfect conductor,

f ~x!52
2

pbE2px/b

`

q2 dq
1

e2qa21
. ~2.5!
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Of course, the integral in Eq.~2.4! is just the inverse of the
finite-temperature prescription~2.1b!, and gives the zero-
temperature result. The only nonzero odd derivative occ
ring is

f-~0!52
16p2

b4
, ~2.6!

which gives a Stefan’s law type of term, seen in Eq.~2.10!
below.

The problem is that the EM formula only applies iff (m)
is continuous. If we follow the argument of Refs.@13–15#,
and take thee1,2→` limit at the end (e1,2 are the permittivi-
ties of the two parallel dielectric slabs!, this is not the case
and for the TE mode

f 050, ~2.7a!

f m52
z~3!

4pba3
, 0,

2pam

b
!1. ~2.7b!

Then we have to modify the argument as follows:

F T5 (
m50

`

8 f m5 (
m51

`

f m5 (
m50

`

8 f̃ m2
1

2
f̃ 0 , ~2.8!

where f̃ m is defined by continuity,

f̃ m5H f m , m.0

lim
m→0

f m , m50.
~2.9!

Then by using the EM formula,

F T5
b

2pE0

`

dz f ~z!1
z~3!

8pba3
2

p2

45 S a

b D 4

52
p2

240a4 F11
16

3 S a

b D 4G1
z~3!

8pa3
T, aT!1.

~2.10!

The same result for the low-temperature limit is extrac
through use of the Poisson sum formula, as, for exam
discussed in Ref.@1#. Let us refer to these results, with th
TE zero mode excluded, as the modified ideal metal mo

Exclusion of the TE zero mode will reduce the line
dependence at high temperature by a factor of 2, but thi
not observable by present experiments. The main probl
however, is that it adds a linear term at low temperatu
which is given in Eq.~2.10!, up to exponentially small cor-
rections@1#.

There are apparently two serious problems with res
~2.10!.

~1! It would seem to be ruled out by experiment. The ra
of the linear term to theT50 term is
6-3
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D5
30z~3!

p3
aT51.16aT, ~2.11a!

or putting in the numbers@300 K5(38.7)21 eV, \c
5197 MeV fm]

D50.15S T

300 K D S a

1 mmD , ~2.11b!

or as Klimchitskaya observed@38#, there is a 15% effect a
room temperature at a separation of 1mm. One would have
expected this to have been seen by Lamoreaux@19#; his ex-
periment was reported to be in agreement with the conv
tional theoretical prediction at the level of 5%.

~2! Another serious problem is the apparent thermo
namic inconsistency. A linear term in the force implies
linear term in the free energy~per unit area!,

F5F01
z~3!

16pa2
T, aT!1, ~2.12!

which implies a nonzero contribution to the entropy per a
at zero temperature:

S52S ]F

]TD
V

52
z~3!

16pa2
. ~2.13!

Taken at face value, this statement appears to be incor
We will discuss this problem more closely in Sec. IV, a
will find that although a linear temperature dependence
occur at room temperature, the entropy will go to zero as
temperature goes to zero. The point is that the free energF
for a finite « always will have a zero slope atT50, thus
ensuring thatS50 at T50. The apparent conflict with Eq
~2.13! or Eq. ~2.10! is due to the fact that the curvature
F(T) near T50 becomes infinite when«→`. So Eqs.
~2.12! and ~2.13!, corresponding to the modified ideal met
model, describe real metals approximately only for low, b
not zero temperature—see, for example, Eq.~4.14!.

III. CASIMIR FREE ENERGY, ENTROPY,
AND INTERNAL ENERGY

The Casimir surface force densityF T between two di-
electric plates separated by a distancea can be written as

F T52
1

pb (
m50

`

8E
zm

`

q2dqF Ame22qa

12Ame22qa
1

Bme22qa

12Bme22qaG .

~3.1!

~We follow the conventions of Ref.@39# and further refer-
ences therein; here we further set\5c51.! The relation
betweenq and the transverse wave vectork' is q25k'

2

1zm
2 , wherezm52pm/b. Furthermore,

Am5S «p2s

«p1sD
2

, Bm5S s2p

s1pD 2

, ~3.2a!
05611
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s25«211p2, p5
q

zm
, ~3.2b!

with «( i zm) being the permittivity. Note that whenever« is
constant, theAm and Bm depend onm and q only in the
combinationp,

Am~q!5A~p!, Bm~q!5B~p!. ~3.3!

~This result may also be found in standard references suc
Ref. @1#.!

The free energyF per unit area can be obtained from E
~3.1! by integration with respect toa sinceF T52]F/]a.
We get@12#

bF5
1

2p (
m50

`

8E
zm

`

@ ln~12lTM!1 ln~12lTE!#q dq,

~3.4a!

where

lTM5Ame22qa, lTE5Bme22qa. ~3.4b!

~In the notation of Ref.@12#, l«[lTM, l[lTE.!
From thermodynamics the entropyS and internal energy

U ~both per unit area! are related toF by F5U2TS, imply-
ing

S52
]F

]T
,

and thus

U5
]~bF !

]b
. ~3.5!

As mentioned above the behavior ofS as T→0 has been
disputed, especially for metals where«→`. We now see the
mathematical root of the problem: The quantitiesAm5Bm
→1 in the«→` limit except thatB050 for any finite«. So
the question has been whetherB050 or B051 or something
in between should be used in this limit as results will diff
for finite T, producing, as we saw above, a difference in t
force linear inT. The corresponding difference in entrop
will thus be nonzero. Such a difference would lead to a v
lation of the third law of thermodynamics, which states th
the entropy of a system with a nondegenerate ground s
should be zero atT50. Inclusion of the interaction betwee
the plates at different separations cannot change this gen
property. We will show that this discrepancy vanishes wh
the limit «→` is considered carefully, by using the Eule
Maclaurin summation formula. Also, we will perform ex
plicit analytic evaluation for anyT for metallic plates in the
case where«→` for all z.

We will consider this latter case first. It is the case of ide
metals mentioned in Sec. I and already considered briefl
Sec. II.
6-4
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A. Ideal metals

With «5` we haveAm5Bm51 where we now also pu
B051, i.e.,lTM5lTE5e22qa. To remove thez dependence
in the lower limit of integration in Eq.~3.4a!, it is convenient
to use the quantityp of Eq. ~3.2b! as a new variable. Expand
ing the logarithmic terms in Eq.~3.4a! and keeping only the
leading term, we get the task of calculating

F'2
1

2pb
I 1 , I 1[2 (

m50

`

8zm
2 E

1

`

pe22gmpdp, ~3.6!

where

gm5azm5
2pa

b
m. ~3.7!

Carrying out the integration in Eq.~3.6!, we obtain

I 15
1

~2a!2
2 (

m50

`

8Lm , ~3.8a!

with

Lm5~2gm11!e22gm. ~3.8b!

~It is easy to check that this result is correct atm50, where
p is not defined.! We encounter the following sums:

s0~g!52 (
m50

`

8e22gm5cothg, ~3.9a!

sk~g!52 (
m50

`

~2gm!ke22mg5~2g!k
]ks0

]gk
, ~3.9b!

so that

s15
g

sinh2g
, ~3.10a!

s25
2g2 coshg

sinh3g
, ~3.10b!

s35g3
614 sinh2g

sinh4g
. ~3.10c!

The quantityI 1 is given by the first two of these sums,

I 1~g!5
1

~2a!2
@s1~g!1s0~g!#. ~3.11!

Alternatively, one could just first perform the summation
Eq. ~3.6! ~for m>1) and then integrate. This summatio
yields s2(gp). By subsequently integratings2 by parts the
quantity (s11s0) in Eq. ~3.11! is recovered~adding them
50 term separately!.
05611
By further expansion of the logarithm in Eq.~3.4a! one
obtains termslk/k to be integrated and summed like E
~3.6!. Performing the same steps as before, we find that re
~3.11! generalizes to

F52
1

8pba2 (
k51

`
1

k3
@s1~gk!1s0~gk!#, ~3.12!

valid for arbitrary temperature.
The surface force per area~3.1! can now be obtained via

F T52]F/]a utilizing g}a @Eq. ~3.7!#. This yields

F T52
1

8pba3 (
k51

`
1

k3
@s2~gk!12s1~gk!12s0~gk!#.

~3.13!

The same result is also obtained by evaluating expres
~3.1! ~with Am5Bm51) in the same way as expressio
~3.4a! for F was evaluated above. Using the second meth
mentioned below Eq.~3.11!, one finds that the integration o
s3(gp)/p yields the combination ofsi present in Eq.~3.13!.

Considering theT→0 limit, which implies the g→0
limit, one obtains

F T52
1

8pba3 (
k51

`
1

k3

6

gk
52

p2

240a4
, ~3.14!

using the limiting values of expressions~3.9a!, ~3.10a!, and
~3.10b!. This is the well known Casimir result for idealize
metallic plates atT50, seen in Eq.~2.10!.

The internal energyU is now found from Eqs.~3.5!, ~3.7!,
and ~3.12! to be

U52g2
]~F/g!

]g
52

1

8pba2 (
k51

`
1

k3
s2~gk!, ~3.15!

and similarly an expression for the entropyS follows from

S522pa
]F

]g
5

U2F

T
52

1

8pa2 (
k51

`
1

k3

3@s2~gk!2s1~gk!2s0~gk!# ~3.16!

with Eqs.~3.12! and ~3.15! inserted.
Now we can analyze the thermodynamic quantities in

low-temperature limit using the properties ofsk as defined by
Eqs. ~3.9a!–~3.10c!. We have for low temperature,1 where
g}T→0,

s05
1

g
1

1

3
g2

1

45
g31•••, ~3.17a!

s15
1

g
2

1

3
g1

1

15
g32•••, ~3.17b!

1Actually, for a room-temperature experiment,g need not be
small. ForT5300 K anda51 mm, g50.823.
6-5
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s25
2

g
2

2

15
g31•••, ~3.17c!

s35
6

g
1

2

15
g32•••. ~3.17d!

Inserting this into expressions~3.12!, ~3.13!, or ~3.15! one
finds that the terms linear ing vanish.2 Thus entropy~3.16!
vanishes, as it should in accordance with the third law
thermodynamics.

To obtain the leading correction to theT50 result for
finite T one must consider theg3 term in the power series
expansion of the summand in Eq.~3.13!. However, the sum-
mation of this term with respect tok diverges,3 because the
expansion ofsn(gk) is not valid for largek. For smallg one
can instead integrate, without expanding, using the Eu
Maclaurin summation formula~2.3! to obtain a finite correc-
tion to the zero-temperature result. Using Eq.~2.3! to evalu-
ate expression~3.13!, the g→0 expression~3.14! has to be
subtracted to makef (0) finite. Puttingx5gk we have, apart
from a prefactor,

f ~x!5
1

x3 Fs2~x!12s1~x!12s0~x!2
6

xG , ~3.18!

with f (0)522/45 in view of expansions~3.17a!–~3.17c!.
Integrating and using expressions~3.9a!, ~3.10a!, and
~3.10b!, we obtain

E
0

`

f ~x!dx52
1

x2 Fs1~x!1s0~x!2
2

xGU
0

`

50. ~3.19!

Including theT50 result~3.14!, we thus find

F T52
1

8pba3 F6

g

p4

90
2

1

2
f ~0!g3G

52
p2

240a4 F11
1

3 S 2a

b D 4G , aT!1, ~3.20!

where we have inserted expression~3.7! for g and noted that
there is nok50 term in Eq.~3.13!, i.e., f (0) is to be sub-
tracted from expression~2.3!. All the odd derivatives in the
Euler-Maclaurin formula vanish becausef (x) is even. It
should be noted that the expression forF T is in agreement
with what has been found earlier@cf. Eq. ~2.10!#, via alter-
native methods, by Milton @1#, Klimchitskaya and
Mostepanenko@6#, Sauer@40#, Mehra@41#, and others, where
the exponentially small correction to the above formula
also given.

2This is actually stronger than necessary to insure vanishing
tropy, since such terms would giveT2 terms in the energy or free
energy.

3For this reason, the alternate expression~3.35! in Ref. @1# might
be preferred. See Eq.~3.39! below.
05611
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The free energy~3.12! can be obtained fromF T5
2]F/]a, but this leaves a temperature dependent cons
of integration. So instead we make use of the method ab
where from Eq.~3.12!

f ~x!5
1

x3 Fs1~x!1s0~x!2
2

xG , ~3.21!

and where nowf (0)52/45. With Eq.~3.21! we get a non-
zero integral

C5E
0

`

f ~x! dx52E
0

`1

x

d

dx S 1

x
cothx2

1

3
2

1

x2D dx

5E
0

` 1

x3 S 1

x
1

x

3
2cothxDdx, ~3.22!

using partial integration. Integral~3.22! may be easily evalu-
ated by contour methods. Due to symmetry the integral
be extended to minus infinity and then the contour of in
gration can be distorted into one that encircles the po
along the positive imaginary axis. Since cothz has poles at
z5 ipm with m integer, we get4

C5
1

2
2p i (

m51

`
21

~p im!3
5

1

p2
z~3!. ~3.23!

In view of this result as well as Eq.~3.14! we obtain for
the free energy (dk5dx/g)

F52
1

8pba2 F2

g

p4

90
1g3S C

g
2

1

2
f ~0! D G

52
p2

720a3 F1145S 2a

b D 3z~3!

p3
2S 2a

b D 4G , aT!1.

~3.24!

This result, including its exponentially small correction,
given in Ref.@1# and references therein. The internal ener
U, which can most easily be evaluated using Eq.~3.5!, can
also be computed by the method above, starting from s
~3.15!. Then

f ~x!5
1

x3 S s2~x!2
2

xD52
1

x2

d

dx S s1~x!1s0~x!2
2

xD ,

~3.25!

with f (0)522/15. Partial integration replaces theC of Eq.
~3.22! with 22C, and we obtain

n-

4This low-temperatureT3 dependence inF, which does not con-
tribute to the force, is determined by the linear high-temperat
behavior ofF T—see Ref.@1#, Sec. 3.2.1.
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U52
p2

720a3 F1290S 2a

b D 3 z~3!

p3
13S 2a

b D 4G , aT!1.

~3.26!

With Eq. ~3.16! the entropy thus becomes~recall thatB0
51 is assumed!

S5
U2F

T
;

3z~3!

2p
T22

4p2a

45
T3, aT!1. ~3.27!

B. Equivalence with earlier results

Equivalence with previous derivations can be shown
anyg. It is then convenient to utilize the Poisson summat
formula. If c̃(k) is the Fourier transform ofc(x), defined by

c̃~k!5E
2`

`

dxc~x!eikx, ~3.28!

then

(
n52`

`

c~n!5 (
m52`

`

c̃~2pm!. ~3.29!

With c(x)5e22guxu one finds

c̃~2pm!5E
2`

`

e22guxu12pmxi dx5
g

g21~pm!2
.

~3.30!

Thus

(
m52`

`
g

g21~pm!2
5 (

n52`

`

e22gunu5cothg, ~3.31!

the familiar cotangent expansion, which can be verified
many different ways~cf. Ref. @42#!.

In Eqs. ~3.12! and ~3.13! one of the sums is@s0(x)
5cothx#

S05 (
k51

`
1

k3
coth~gk!5 (

k51

`

(
m52`

`

S0mk , ~3.32a!

where with Eq.~3.31!

S0mk5
gk

k3@~gk!21~pm!2#
5

1

muF 1

k2
2

1

k21~u/p!2G ,

u5p2m/g. ~3.32b!

Summation first with respect tok where also result~3.31! is
utilized then gives

S0m5 (
k51

`

S0mk5
1

muFp2

6
2

p2

2u S cothu2
1

uD G . ~3.33!

In the limit g→0 only them50 term remains, and we ge
the T50 result if we use expansion~3.17a! (u→0):
05611
r
n

n

S00→
1

muS 2
p2

2uD S 2
u3

45D5
p4

90

1

g
, ~3.34!

which is consistent with the 1/k4 sum occurring in Eq.
~3.14!.

To obtain the free energyF and the forceF T there are
sums S1 and S2 that follow from the s1 and s2 of Eqs.
~3.10a! and ~3.10b!. And like Eqs.~3.32a! the relations be-
tween the varioussi lead to

S1m52g
]

]g
g5ug8, ~3.35!

whereg(u)5S0m . Also

S2m5g2
]

]g S 2
u

g
g8D52ug81u2g9. ~3.36!

So to obtainF T we need, because

S 214u
]

]u
1u2

]2

]u2D 1

u2
g~u!5g9~u!, ~3.37!

the combination

S2m12S1m12S0m5
p2

6m

d2

du2 Fu23S cothu2
1

uD G
5

p2

m S 1

u3
2

coshu

sinh3u
D →

m→0p2

m

u

15
5

p4

15

1

g
.

~3.38!

Altogether, restrictingm to positive values due to symmetry
expression~3.13! can be reexpressed as (u5p2m/g, g
52pa/b)

F T52
p2

240a4 F1130(
m51

` S 1

u4
2

coshu

u sinh3u
D G , ~3.39!

which is the desired known expression.„For example, com-
pare Eq.~3.35! of Ref. @1#.…

To calculate the free energy~3.12!, one likewise needs

S1m1S0m5
p2

6m

d

duF123S cothu

u
2

1

u2D G
5

p2

2mFcothu

u2
1

1

u sinh2u
2

2

u3G
→

m→0 p2

2m S 2
1

45
1

1

15Du5
p4

45

1

g
. ~3.40!

Thus the free energy becomes

F52
p2

720a3 F1145(
m51

` S cothu

u3
1

1

u2sinh2u
2

2

u4D G .

~3.41!
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Compared with the smallT or g expansion~3.24! it is clear
that the last term of Eq.~3.41! gives theT45b24 term of Eq.
~3.24!. The coefficientC can also be identified from Eq
~3.41!. As cothu→1 wheng→0 we must have, when com
paring with Eq.~3.24!,

S g

p D 4 45C

g
545(

m51

`
1

u3
545S g

p2D 3

(
m51

`
1

m3
,

~3.42a!

or

C5
1

p2
z~3!, ~3.42b!

which is in agreement with Eq.~3.23!.

IV. FINITE PERMITTIVITY: REAL METALS

A. Two harmonic oscillator models

With finite permittivity « theAm andBm of Eq. ~3.2a! will
vary with p. Especially Bm→0 as p→` or zm→0 (zm
52pm/b). In the high-temperature or classical limit on
the Matsubara frequencyz50 ~or m50) can contribute as
b→0. Thus, in the classical limit one has the result that
TE mode does not contribute at all. Physically, this me
that the temperature becomes so high that only the s
dipole-dipole interaction contributes~the z→0 limit of the
TM mode!. In our opinion this somewhat unexpected beha
ior is related to the peculiar type of interaction that exi
between the canonical momentump of a particle and the
electromagnetic vector potentialA(r ,t), which for a particle
of massm and chargeq is (p2qA)2/2m. In addition to the
standard cross term interactionp•A this also implies an in-
teractionA2.

As an illustration of the above we can consider two mo
els, in each of which two harmonic oscillators interact via
third one. These oscillators represent a simplified picture
our polarizable parallel plates interacting via the electrom
netic field. The classical partition function of a harmon
oscillator with frequencyv is const/(bv);1/Av2, which
gives a free energy; ln(v2). Thus for three noninteracting
harmonic oscillators the inverse partition function is prop
tional to AQ, where

Q5a1a2a3 , ~4.1a!

with

ai5v i
2 ~ i 51,2,3!. ~4.1b!

~The quantitya3 corresponds tok'
2 above.! By quantization

using the path integral method@42,43#, the classical system
is split into a set of harmonic oscillator systems described
Matsubara frequencies. Expression~4.1a! is replaced by

Q5A1A2A3 , ~4.2a!

where
05611
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Ai5v i
21z25ai1z2. ~4.2b!

~For real frequenciesv5 i z, 1/Ai determines the response
an external oscillating force acting on the oscillator.!

Now add interactions, of strength proportional toc, be-
tween the third oscillator and the other two. The usual fo
of this interaction iscxixj , wherexi andxj are coordinates.
Let this constitute the first model, which is analogous to
TM mode. Then the quantityQ becomes the determinant o
the matrix,

Q5UA1 0 c

0 A2 c

c c A3

U5A1A2A32c2~A11A2!

5A1A2A3~12D1!~12D2!S 12
D1D2

~12D1!~12D2! D ,

~4.3a!

where

Di5
1

Ai

c2

A3
~ i 51,2!. ~4.3b!

The quantum free energy for this system of three coup
oscillators is given by summing over the Matsubara frequ
cies, as in Eq.~3.4a!:

bF5
1

2
lim

N→`
(

m51

N

@ ln Q~zm!13 lnh2#, ~4.4!

where h5b/N and z2 is replaced by 2@12cos(zh)#/h2

(5z21•••) in the A1A2A3 term of Eq.~4.3a!. The limiting
procedureN→` is required to make the full free energ
well defined. This means that the path integral representa
of a harmonic oscillator is discretized by dividing the imag
nary time of periodicityb into N pieces each of lengthh as
done in Ref.@42#. There, in the appendix an explicit evalu
tion was performed for one single oscillator.

The various factors in Eq.~4.3a! can be interpreted a
follows: The productA1A2A3 corresponds to the noninterac
ing system, the next two factors represent the result of in
action of single oscillators with the third one, while the la
one is the contribution from the induced interaction betwe
the two single oscillators via the third one. The logarithm
the last term is the analog of the Casimir free energy. In t
respect the termc2/A3 represents the induced interactio
Furthermore the 1/ai ( i 51,2) represents the ‘‘bare’’ polariz
ability of noninteracting particles, which for nonzeroz be-
comes 1/Ai . Due to interaction with the ‘‘radiation’’ field
this polarizability is modified into 1/@Ai(12Di)# ( i 51,2),
where Di represents a radiation reaction from the ‘‘field
upon each single oscillator.

The above represents the ordinary situation, analogou
the TM mode. To model the TE mode, we can consider
analogy with the electromagnetic interaction in which t
third oscillator can interact with the momenta of the first tw
The analogous interaction will be (pi2const3x3)2/2mi
6-8
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( i 51,2; mi is mass!, including the unperturbedpi
2 term. By

evaluation of the classical partition function one now fin
that the interaction from const3x3 has no influence.~This is
the analog of classical diamagnetism which is equal to z
as const3x3 is seen to have no influence on the result wh
pi is integrated first.!

Quantum mechanically, the problem is a bit more co
plex. However, we can now exchange the roles of mome
and coordinates of the first two oscillators, i.e., we introdu
a momentum representation. Then the interaction with
third oscillator can be written as (i 51,2)

const3ai S xi2
c

ai
x3D 2

5const3S aixi
222cxix31

c2

ai
x3

2D .

~4.5!

Now the last quadratic term adds to the energy of the th
oscillator alone. Thus, compared to the first model cons
ered above,a3 is changed while the otherai remain un-
changed:

a3→a31c2/a11c2/a2 . ~4.6a!

Likewise in the quantum case,

A3→A31c2/a11c2/a2 . ~4.6b!

The quantityQ can still be written in form~4.3a!, but due to
the change ofa3, the (1/Ai) ( i 51,2) is replaced by 1/Ai
21/ai52z2/(aiAi) when evaluatingDi , i.e.,

Di52
z2

ai~ai1z2!

c2

A3
. ~4.7!

The induced~analogous to the Casimir! free energy is again
given by the logarithm of the third term in Eq.~4.3a!. At zero
and finite temperatures the latter logarithm is negative,
the free energy

T

2 (
m52`

`

lnS 12
D1D2

~12D1!~12D2! D ~4.8!

is negative. Note that here the limiting procedure of Eq.~4.4!
is not needed as sums for free energy differences conve
without difficulties. In the classical limit, however, the in
duced free energy becomes equal to zero (Di→0 implies
that we get the logarithm of unity!. We note the analogy: A
high temperatures the same is true for the TE mode in
Casimir effect. There exists thus at least somewhere a fin
temperature interval for which the Casimir free energyin-
creaseswith increasing temperature. In turn, this means t
the Casimir entropyS52]F/]T becomes negative in thi
interval.

This is a counterintuitive effect, but is physically due
the fact that we are dealing with the induced interaction p
of the free energy of a composite system. We cannot ap
usual thermodynamic restrictions such as positiveness of
tropy to a ‘‘subsystem’’ of this sort. There exists actually
striking analogy with the peculiar formal properties one e
counters in connection with the theory of the electromagn
05611
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field in a continuous medium. The electromagnetic ener
momentum tensor that experimentally turns out to be d
nitely the best alternative when dealing with high-frequen
effects is the Minkowski tensor~cf., for instance, Ref.@44#!.
This tensor is, however, nonsymmetric, apparently break
general conservation principles for angular momentum. T
reason why this peculiar behavior is yet quite legitima
physically, is that phenomenological electrodynamic the
is dealing only with a subsystem~the field itself plus its
interaction with matter!, and we cannot apply the same fo
mal restrictions on it as we could if the system were clos

B. Real metal

In the limit of an ideal metal («→`) the traditional
~SDM! prescription, as mentioned in the Introduction, im
plies thatAm5Bm51 for all m. In addition, as also men
tioned previously, thermodynamic arguments have b
given, claiming that the entropy does not become zero aT
50 in violation of the third law of thermodynamics ifB0
50 is used@35#. However, we do not find this to be the cas
as we will show below, the entropy will be zero as requir
at T50, even for a metal that is not idealized and where o
bases the analysis on the valueB050.

Let us go back to Eq.~3.6!. That equation was obtaine
by expanding Eq.~3.4a! to first order inl under the assump
tion that Am5Bm51. Doing the same expansion for finit
permittivity, we obtain an integrand that contains a term w
a factorBm ~or Am) that varies withp5q/zm such thatBm
→0 whenp→`. Expanding Eq.~3.4a! to higher order one
obtains likewise powers ofBm which, becauseBm,1, be-
come less important as compared to the case of an i
metal~whereBm51). One can first consider the case whe
« is independent ofz. When « is large one can use as
rough approximation

Bm5H 1, p,A«

0, p.A«.
~4.9!

This simple expression forBm is intended to show essentia
features that will be obtained more accurately in a deta
numerical calculation. With this, Eq.~3.9a! ~neglecting the
influence ofAm) will turn into

s0~g!→s0~g!2s0~A«g!5cothg2cothgc ,
~4.10a!

with similar modifications forsi( i 51,2,3). Here

gc5gA« ~4.10b!

is an effective sharp cutoff limit for the integral, a crud
model for what should be a gradual cutoff for the integral
interest.„A gradual cutoff will only modify the last term of
Eq. ~4.10a! into a sum or integral over terms with varyin
gc . Namely, with varyingB5B(p), Eq. ~3.6!, if we recall
the comment below Eq.~3.11!, changes into@B(1)'1 for «
large#
6-9
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I 15
1

~2a!2E1

`

B~p!s2~gp!
dp

p

5
1

~2a!2
@s0~g!1s1~g!#

1
1

~2a!2E1

`

@s0~gp!1s1~gp!#B8~p! dp, ~4.11!

using partial integration. Approximation~4.9! means that
B8(p)52d(p2A«).…

As we did to obtain Eq.~3.27!, we carry out the sum ove
k in Eq. ~3.16! while assuming« sufficiently large such tha
approximation~4.9! can be used. Then as in Eq.~4.10a! one
obtains the previous result minus a term withg→gc . If we
keep only the leading term, Eq.~3.27! is modified into

STE;
3z~3!

4p
~12«!T2, A«aT!1. ~4.12!

„However, to be more accurateBm5@(A«21)/(A«11)#2

for p51 and thusBm,1 for p,A«. When this is taken into
account, we find thatSTE}2a«5/2T3 in a more narrow re-
gion, «3/2aT!1, but that Eq.~4.12! holds for «23/2!aT
!«21/2.…

Thus the entropy approaches zero as the temperature
to zero. As« increases theT dependence becomes more s
gular, because the region in which Eq.~4.12! is valid be-
comes more and more narrow, but the value atT50 stays
fixed at zero also in the limit«→`. This contrasts with the
ideal metal result~2.13! where«5` is used.

Again, we note the counterintuitive negative contributi
from the TE mode. As mentioned earlier, this does not v
late the laws of thermodynamics and can be understoo
terms of the oscillator model analyzed in some detail in S
IV A. Only the total entropy has to increase with increasi
temperature. And this is the case for the inverse partit
function ~4.3a!, which represents three interacting harmon
oscillators where theDi are given by Eq.~4.7!. Although the
induced entropy becomes negative at least in some fin
temperature region the total entropy will behave properly
the total system can be decomposed into three indepen
harmonic oscillators represented by the eigenvalues of
trix ~4.3a! with Ai replaced byai ( i 51,2), and furthermore
A3 replaced by the right hand side of Eq.~4.6a!.

With simplification~4.9! for the TE mode, the free energ
can be easily expressed in terms of the ideal metal case
lyzed in Sec. III A. Let the ideal metal free energy beF
5FI(T). From Eq.~3.7!, g}T. Now the magnification ofg
to gc as in Eq.~4.10b! and insertion of it in Eq.~3.12! will
change the corresponding free energy to (g/gc)FI(Tgc /g)
5FI(A«T)/A«. The TM and TE modes both contribute th
same amounts to Eq.~3.12!. Thus with Eq.~4.9! the free
energy will be

F5F~T!5FI~T!2
1

2A«
FI~A«T!. ~4.13!
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From this we have~keeping in each case only the leadin
temperature correction!

F~T!

55 @121/~2A«!#FI~0!2
z~3!

4p
~22«!T3, 0<aT!1/A«

FI~0!1KIT/2, 1/A«!aT!1

2KIT/2, 1!aT,
~4.14!

where the constantKI5z(3)/(8pa2) is the magnitude of the
slope of the linear dependence of the high-temperature re
of the ideal metal@FI(0)52p2/720a3,0#. Thus for high
temperatures, nonideal or realistic metals yield one-half
the ideal metal result. The intermediate form, which holds
room temperature, is the same as seen in Eq.~2.12!. Again,
we see that in theA«aT!1 regime, result~4.12! for the
entropy holds.@Equation ~4.14! includes the TM mode as
well.#

Now, « usually depends onz. But this will not change our
conclusions from Eq.~4.12!. To see this we can go back t
expression~3.6! which followed from expansion of the loga
rithmic term in the free energy~3.4a!. In the general case, th
coefficientsAm and Bm , which are less than 1, should b
included in Eq.~3.6!, and powers of them will occur in the
evaluation of the terms contributing to the free energy
k.1. These factors will all be smooth functions ofz except
for the case of an idealized metal whereBm becomes discon-
tinuous atz50. This smoothness is also valid for the Drud
formula discussed in Appendix A. WithAm andBm included,
Eq. ~3.4a! can be summed with respect tozm52pm/b, and
the Euler-Maclaurin formula~2.3! can again be applied
@Equation ~3.6! with Bm included is not applicable in this
situation as we remarked there becausez→0 is of relevance
here.# If « stays finite whenz→0, the result clearly will be
the same as that given above. However, for a real m
where«→` as z→0 the situation is more subtle. For th
case of an ideal metal considered in Sec. II, the first der
tive f 8(0) was zero whilef-(0) of Eq. ~2.6! was nonzero.
By similar application of the Euler-Maclaurin formula to th
free energy~3.4a! instead of force~3.1!, the same will be
true. For a real metal obeying the Drude dispersion relat
~1.1! ~with nÞ0), the first derivativef 8(0) continues to be
zero due to thez dependence ofBm , Bm;zm

2 , according to
Eq. ~A4!. Thus, quite generally, we expect aT3 ~or T4) cor-
rection to the free energy at sufficiently low temperature.

C. Gold as a numerical example

Let us go back to Eq.~3.1! for the surface force density
making use of the best available experimental results
«( i z) as input when calculating the coefficientsAm andBm .
We choose gold as an example. Useful information about
real and imaginary partsn8 and n9 of the complex permit-
tivity n5n81 in9, versus the real frequencyv, is given in
6-10
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Ref. @45# and similar sources. The range of photon energ
given in Ref.@45# is from 0.1 eV to 104 eV. ~The conversion
factor

1 eV51.51931015 rad/s ~4.15!

is useful to have in mind.! When n8 and n9 are known the
permittivity «( i z) along the positive imaginary frequenc
axis, which is a real quantity, can be calculated by mean
the Kramers-Kronig relations.

Figure 1 shows how«( i z) varies withz over seven de-
cades,zP@1011,1018# rad/s. The curve was given in an ea
lier paper@30#, and is reproduced here for convenience. W
are grateful to A. Lambrecht and S. Reynaud for hav
given us the results of their accurate calculations. At l
photon energies, below about 1 eV, the data are well
scribed by the Drude model, Eq.~1.1!, in which the input
parameters have the values@30#

vp59.0 eV, n535 meV. ~4.16!

These values refer to room temperature. The curve in Fi
shows a monotonic decrease of«( i z) with increasingz, as
any permittivity along the positive imaginary axis has to fo
low according to thermodynamical requirements. The t
broken curves in the figure show, for comparison, h
«( i z,T) varies with frequency if we accept the Drude mod
for all frequencies, and include the temperature depende
of the relaxation frequency withT as a parameter, cf. Appen
dix D. ForT5300 K, the Drude curve is seen to be good f
all frequencies up toz;231015 rad/s; for higherz it gives

FIG. 1. Full line: permittivity«( i z) as a function of imaginary
frequencyz for gold. The curve is calculated on the basis of expe
mental data.~Reprinted with the courtesy of Astrid Lambrecht an
Serge Reynaud.! Broken lines:«( i z) versusz with T as a param-
eter, based upon the temperature dependent Drude model; cf
pendix D. The upper curve is forT510 K; the lower is forT
5300 K, which for energies below 1 eV (1.531015 rad/s) nicely
fits the experimental data. Both curves are below the experime
one forz.231015 rad/s.
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too low values of«. Both Drude curves, forT510 K and
T5300 K, are seen to give the same values whenz>3
31014 rad/s.

The structure of Eq.~3.1! shows that for numerical inte
gration it is advantageous to introduce the nondimensio
quantity

y5qa ~4.17!

as the integration variable. The force expression then ta
the form

FT52
1

pba3 (
m50

`

8E
mg

`

y2dyF Ame22y

12Ame22y
1

Bme22y

12Bme22yG .

~4.18!

~This formula holds even when practical units are restor
whenb51/kBT.! Typical magnitudes of the attractive pre
sure are about one millipascal, for a gap width of 1mm.
~The force between ideal metal plates at zero temperature
1-mm separation is 1.30 mPa.!

The next task is to determine the values ofAm andBm , in
the limiting case ofm→0. This has to be done analytically
Whereas the TM mode leads unambiguously toA051 («
@1), the TE mode is more delicate. In Appendix A we sho
explicitly, by means of a limiting procedure based on t
Drude model, howBm→0 when z→0, i.e., whenm→0.
The m50 TE mode accordingly does not contribute. T
summarize,

A051, B050 for a metal @«~0!5`#, ~4.19a!

A05S «21

«11D 2

,

B050 for a dielectric medium @«5«~0!#. ~4.19b!

These relations will be assumed in the following.
There are some general properties of expression~4.18!

that ought to be noticed. First, at the lower limit,y5mg, the
coefficientsAm andBm for m>1 become equal,

Am5Bm5S A«21

A«11
D 2

, «5«~ i zm!. ~4.20!

This expression is precisely the reflection coefficient
Poynting’s vector, at normal incidence. This special case
viously corresponds tok'50. Then the TE and TM modes
are identical to each other. Second, we note that for la
values ofy, the integrand in Eq.~4.18! approaches

S «21

«11

y

eyD 2

, «5«~ i zm!, ~4.21!

showing how quickly the contributions from largey die out.
The full line in Fig. 2 shows how the magnitude ofFT for

gold varies with the dimensionless parameteraT, when a
51 mm. The lower limitaT54.431023 corresponds to the
low temperature ofT510 K. Terminating they integration

-

p-

tal
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at the upper limitymax530 we found the necessary numb
of terms in them sum to be aboutN5450. At room tem-
perature T5300 K corresponding toaT50.131 and g
50.823, the required number of terms was found to
lower, N515 ~assuming the sameymax). In the upper limit,
aT50.52 (T51200 K), onlyN54 was required. This prop
erty of only a small number of terms being necessary at h
temperatures is as we would expect. Note, however, tha
temperature variation of«( i z) is not taken into account. Th
only known empirical data for«( i z) are referring to room
temperature, and are as given in Fig. 1.

The broken line in the same figure gives the result cal
lated from the expression in Eq.~2.10!, which is for the
modified ideal metal model in which the TE zero mode h
been removed. The deviations from the full lines are see
be quite uniform: 13% at the lower limit, 12% at room tem
perature, and 18% at the upper limit. This uniformity in t
deviations is somewhat surprising, in view of the fact th
expression~2.10! is a low-temperature expansion which o
would expect to be most accurate whenaT→0. The reason
for the deviations must lie in the different ways the two for
expressions are calculated: Eq.~2.10! is based upon the ide
alized assumptionsAm5Bm51 for all m except thatB0
50, whereas Eq.~4.18! is calculated using the realistic dis
persive data from Fig. 1, plus Eq.~4.19a! in the casem
50.

Figure 3 shows that the behavior is essentially the sam
the gap is made wider,a54 mm. The forces are now only
about 0.4% of those in Fig. 2. The lower limitaT50.017
corresponds toT510 K (N5115 terms necessary!, and the
upper limit aT50.523 corresponds toT5300 K (g53.29,
N54). The deviations between the full dispersive result a
Eq. ~2.10! are now smaller than previously, about 5%.

As experiments are usually made at room temperature

FIG. 2. Magnitude of surface force densityF for gold, in the
temperature interval 10 K<T<1200 K, whena51 mm. The solid
line is the physical result calculated from Eq.~4.18! where the
room-temperature data for«( i z) shown in Fig. 1 are used. Th
broken line is calculated from the ideal low-temperature fo
~2.10!.
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various gap widths, we show in Fig. 4 how the surface fo
density for gold varies witha, at T5300 K. We have here
chosen to multiply the ordinate witha4. The linear slope
seen fora>4 mm is nearly that predicted in Eq.~4.14!,
which gives a slope of 2.0310228 N m2/mm. The linear re-
gion between 1 and 2mm corresponds to that in Eq.~2.10!
or Eq. ~4.14! ~intermediate temperatures!. Also shown is the
prediction of the temperature dependent Drude model~Ap-
pendix D!, whenT5300 K. The differences are seen to b
very small. Since the Drude values for the permittivity a
lower than the empirical ones at high frequencies, as see
Fig. 1, we expect the predicted Drude forces to be sligh
weaker than those based upon the empirical permittivit
This expectation is borne out in Fig. 4; the differences be
large enough to be slightly visible at short distances, as
would expect since the plasma nature of the material
comes more pronounced for small distances. Note that
temperature dependence of the permittivity is irrelevant h
because the temperature is fixed, unlike in Figs. 2 and 3

FIG. 3. Same as Fig. 2, but at a larger spacing,a54 mm, cor-
responding to 10 K<T<300 K.

FIG. 4. Surface force density for gold, multiplied bya4, versus
a whenT5300 K. Input data for«( i z) are taken from Fig. 1.
6-12
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It is of interest to check the magnitude of the dispers
effect in these cases. We have therefore made a sep
calculation of expression~4.18! when« is taken to be con-
stant. Figure 5 shows how the force varies withaT in cases
when «P$100,1000,10 000,̀% are inserted in the expres
sions forAm andBm in Eq. ~3.2a!. Note that the«5` curve
is obtained easily via the analytic result~3.13!, with Am
5Bm51 for all m>1. With B050, Eq. ~3.13! is modified
into

F T~«5`!5
1

8pba3

3H z~3!2 (
k51

`
1

k3
@s2~gk!12s1~gk!12s0~gk!#J ,

~4.22!

which amounts to adding the last term of Eq.~2.10!. @The
sum is alternatively given in Eq.~3.39!, and the low-
temperature limit is given in Eq.~2.10!.# It is seen from the
figure that the first three curves asymptotically approach
«5` curve, given by Eq.~4.22! when « increases, as we
would expect. Again, we emphasize that the dispersive cu
for gold is calculated using the available room-temperat
data for«( i z) from Fig. 1. In the nondispersive case, there
of course no permittivity temperature problem since« is
taken to be the same for allT.

There are several points worth noticing from Fig. 5.
~i! The curves have a horizontal slope atT50. For finite

« this property is clearly visible on the curves. This has to
so on physical grounds: If the force had a linear depende
on T for smallT so would the free energyF, in contradiction
with the requirement that the entropyS52]F/]T has to go

FIG. 5. Nondispersive theory: surface force density calcula
from Eq. ~4.18! for «P$100,1000,10 000,̀%. The «5` result is
calculated from Eq.~4.22!. For low values ofaT the latter coincides
with expression~2.10! used in Fig. 2. Also shown for comparison
the dispersive result for gold, where experimental input data
«( i z) are taken from Fig. 1. Gap width isa51 mm. The constraint
a51 mm applies only to the dispersive case, since otherwisea4F T

is a function ofaT only.
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to zero asT→0. For the gold data the initial horizontal slop
is not resolvable on the scale of this graph, see the discus
at the end of Sec. IV B.

~ii ! The curves show that the magnitude of the forcedi-
minisheswith increasingT ~for a fixeda), in a certain tem-
perature interval up toaT.0.3. This perhaps counterintu
tive effect is thus clear from the nondispersive curves as w
as from the dispersive curves in Figs. 2 and 3.

~iii ! It is seen that the curve for«5const51000 gives a
reasonably good approximation to the real dispersive cu
for gold whena51 mm; the deviations are less than abo
5% except for the lowest values ofaT (aT,0.1). This fact
makes our neglect of the temperature dependence of«( i z)
appear physically reasonable; the various curves turn ou
be rather insensitive with respect to variations in the in
values of«( i z).

~iv! One notes that the curves~for large«) in Fig. 5 are
consistent with the free energy~4.14! using the rough ap-
proximation ~4.9! for Bm . Especially one notes the initia
decrease of the magnitude of the Casimir force for increas
T when « is large. As discussed below, Eq.~4.12!, this is
again connected with the counterintuitive negative contri
tion to the entropy.

~v! Also, it can be remarked thatB050 is required when
« is finite. Otherwise the curves in Fig. 5, and thus the fr
energy, would have a finite slope atT50, which again
would imply a finite entropy contribution atT50 in viola-
tion with the third law of thermodynamics.

Instead of confining ourselves to a ‘‘black box’’ calcula
tion of the force expression~4.18!, it is desirable to break up
the expression somewhat, to see how the various valuesm
contribute. We do this in Tables I–III, for gold. The first tw
tables refer to the caseT510 K. @Again, the experimenta
values of«( i z) at room temperature are used.# As y is the
important integration parameter in Eq.~4.18!, we keepy
fixed in Table I,yP$1,3%. It is seen thatAm stays close to 1,
whereasBm decreases for increasingy, if m is kept constant.
Table II shows how the variousm’s contribute to the force.
Writing the total force as a sum,

F T5 (
m50

`

F m
T , ~4.23!

d

r

TABLE I. Some data in the dispersive theory for gold. HereT
510 K, y[qaP$1,3%. Room-temperature input data for«( i z) are
taken from Fig. 1.

y51 y53
m «( i zm)3103 zm31012 rad/s Am Bm Am Bm

1 382.0 8.226 0.9998 0.7899 0.9999 0.49
3 100.4 24.68 0.9990 0.8578 0.9997 0.63
5 49.76 41.13 0.9975 0.8774 0.9992 0.67
7 30.28 57.58 0.9956 0.8872 0.9985 0.69
9 20.52 74.03 0.9931 0.8930 0.9977 0.71
11 14.87 90.49 0.9902 0.8970 0.9967 0.72
13 11.30 106.9 0.9867 0.8998 0.9955 0.72
15 8.891 123.4 0.9827 0.9020 0.9942 0.73
6-13
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the columns in the table show the percentage ofF m
T , i.e.,

(F m
T /F T)3100, distributed over the regionmP@0,7#, when

T510 K. The distribution from the variousm’s is seen to be
very broad, as is characteristic for a low-temperature pr
lem. Table III shows the same kind of distribution overm
when T5300 K. Already from a gap distance ofa
53 –4 mm onwards, the distribution is heavily concentrat
around low m, as is characteristic of a high-temperatu
problem.

It is in this context instructive as a corollary to go back
the integral overy in Eq. ~4.18!. One would expect the main
contribution to the integral to come from the regiony5qa
5Ak'

2 1z2 a;1. Assuming the most important values ofk'

to be moderate, this meansza;1, or m;1/(2paT), since
z52pmT. When T5300 K, we thus expect the dominan
contribution to come from m;1 whena51 mm, and from
m50 whena>3 mm. This is seen to agree very well wit
the data in Table III. Similar considerations apply to the ca
T510 K, although the contributions from the variousm’s
are then more smeared out.

The important question now is: Have the characteris
temperature variations shown in the theoretical figures ab
been verified in practice? Of most interest in this contex
the experiment of Bressiet al. @26#, since it deals with par-
allel plates directly. According to personal information fro
Onofrio, one of the members of the Italian group, the o

TABLE II. Contribution from the various Matsubara frequenci
for gold. What is given is the percentage ofF T for each mode in the
region mP@0,7#. The temperature isT510 K. Room-temperature
input data for«( i z) are taken from Fig. 1.

a
(mm) m50 m51 m52 m53 m54 m55 m56 m57

0.5 0.32 0.98 1.03 1.05 1.06 1.07 1.08 1.0
1 0.58 1.98 2.05 2.07 2.08 2.08 2.07 2.0
2 1.10 4.04 4.09 4.07 4.02 3.96 3.88 3.7
3 1.63 6.11 6.09 5.98 5.80 5.59 5.36 5.1
4 2.16 8.18 8.04 7.75 7.37 6.93 6.45 5.9
5 2.69 10.24 9.92 9.37 8.69 7.94 7.16 6.3
6 3.23 12.30 11.71 10.81 9.75 8.63 7.51 6.4
7 3.78 14.33 13.39 12.06 10.55 9.02 7.56 6.2

TABLE III. Same as in Table II, but at temperature 300 K. Da
from Fig. 1 are again used.

a
(mm) m50 m51 m52 m53 m54 m55 m56 m57

0.5 10.20 31.24 22.95 15.09 9.18 5.28 2.91 1.5
1 20.07 49.37 20.83 6.97 2.03 0.54 0.14 0.0
2 44.56 49.87 5.17 0.37 0.02
3 70.95 28.41 0.63 0.01
4 88.88 11.07 0.05
5 96.58 3.42
6 99.06 0.94
7 99.76 0.24
05611
-

e

c
ve
s

-

served Casimir forces were lower than those predicted by
traditional ~SDM! theory for conducting plates, in case
where the distances were low,a<0.5 mm. This reduction
effect is apparent also from their Fig. 4. Now, the plates
this experiment were coated with chromium rather than w
gold, but we can check that the corrections in that case ar
the same magnitude as if the plates were coated with g
Namely, an explicit calculation of the analog of Fig. 5 for th
casea50.5 mm ~not shown here! shows that at room tem
perature for whichaT50.065, the force becomes2F T

515.5 mPa. The conventional~SDM! theory gives in this
case the force 1.3324520.8 mPa. The predicted reductio
in the force is thus about 25%, somewhat more than
measurements indicate. In any case, this suggests tha
reduced force seen at room temperature in Ref.@26# may be
the first actual observation of the temperature effect p
dicted theoretically.

At larger distances, however, between 1 and 2mm, the
situation is no longer so clear-cut, since they observe a
simir force in excess of the theoretically predicted one. T
reason for this deviation is not known. Of course the for
becomes weaker at larger distances, thus being subje
larger experimental uncertainties. The most natural con
sion to be drawn at this stage is that we have to wait fo
better precision in this kind of difficult experiment. Ideas f
such an improved experiment, which could descriminate
tween the different models, have just appeared@46#.
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APPENDIX A: ON THE SMOOTHNESS OF THE
REFLECTION COEFFICIENT r 2 AT LOW FREQUENCIES,

FOR A METAL

In view of the current discussion in the literature about t
value of the reflection coefficientr 2 for a metal in the limit
of low frequencies, let us consider this point in some det
As mentioned earlier, the problem occurs in connection w
use of the Drude formula, Eq.~1.1!. The coefficientr 2 is
actually the square root of our quantityBm defined in Eq.
~3.2a!, so that we may write

r 2
25S s2p

s1pD 2

. ~A1!

Let us keep the transverse wave vectork' fixed, and perform
a power series expansion of«( i z) to the first order inz/n.
6-14



s

-

Th
n

e
el
th
ef

n
-

’s

. If
e
re,

co-

ed

n’s

DOES THE TRANSVERSE ELECTRIC ZERO MODE . . . PHYSICAL REVIEW E 67, 056116 ~2003!
@Any normal metal must have a finite relaxation frequencyn,
so that in the limit of low frequencies,z/n can be regarded a
small. At zero temperature, we are assumingn(T50)Þ0.#
From Eq.~1.1!, we get

«~ i z!21→
vp

2

nz S 12
z

n D , ~A2!

which for the Lifshitz variabless and p implies @cf. Eq.
~3.2b!#

s5A«211p2→ k'

z S 11
vp

2z

2nk'
2 D , ~A3a!

p5
k'

z
A11

z2

k'
2
→ k'

z
. ~A3b!

Insertion into Eq.~A1! now yields

r 2
2→S vp

2

4k'
2 D 2S z

n D 2

. ~A4!

We thus see thatr 2
2→0 smoothly asz→0. Contrary to re-

cent statements in the literature@6–8#, we find that there is
no peculiar effect taking place atz50, when the Drude
model is used. Result~A4! corresponds to a vanishing con
tribution to the Casimir effect from them50 TE mode for a
real metal, in accordance with our treatment in Sec. IV.

The argument above hinged on the assumption thatk'

Þ0. One might wonder: What happens ifk' is exactly zero?
Mathematically, it then follows from Eq.~3.2b! that r 2

251.
This case cannot, however, be of physical importance.
setk'50 is mathematically of measure zero, and has thus
influence upon real physics.

APPENDIX B: ON THE PHYSICAL IMPORTANCE
OF Am AND Bm

It is physically instructive to show in some detail how th
coefficientsAm and Bm relate to the conventional Fresn
coefficients in optics, at oblique incidence. Consider first
TM mode, and let a plane wave be incident from the l
~medium 1, refractive indexn15A«) at a real angle of inci-
denceu i towards the boundary located atz50. The angle of
transmission to the vacuum regionz.0 is u t . For instance
from Ref. @47# we have the following for the ratio betwee
the reflected wave amplitudeRTM and the incident wave am
plitude ATM

RTM

ATM
5

cosu i2n1cosu t

cosu i1n1cosu t
. ~B1a!

Since cosui5A12k'
2 /(«v2), cosut5A12k'

2 /v2 we get,
when replacingv by i z,

RTM

ATM
5

A«1k'
2 /z22«A11k'

2 /z2

A«1k'
2 /z21«A11k'

2 /z2
. ~B1b!
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Now s5A«211p25A«1k'
2 /z2, p5q/z5A11k'

2 /z2,
and so we get

RTM

ATM
5

s2«p

s1«p
5AAm. ~B2a!

Similarly for the TE mode,

RTE

ATE
5

s2p

s1p
5ABm. ~B2b!

Of course, these results are also found in Ref.@48#.

APPENDIX C: PARALLEL DIELECTRICS

In Ref. @1# the following result for the TE reduced Green
function is given:

gH~z,z8!5
1

2k2
~e2k2uz2z8u1r e2k2(z1z822a)!, ~C1!

which is valid forz, z8.a. Here the reflection coefficient is

r 5
k22k3

k21k3
1

4k2k3

k3
22k2

2
d21, ~C2a!

d5
k31k1

k32k1

k31k2

k32k2
e2k3a21, ~C2b!

and

k i
25k22v2e i , ~C3!

and we have taken a parallel dielectric slab geometry

e~z!5H e1 , z,0

e3 , 0,z,a

e2 , a,z.

~C4!

The temperature controversy centers on the zero mode
v2e vanishes atv50 ~true for the Drude model, but not th
plasma model!, then the reflection coefficient vanishes the
r 50, and we have only a free Green’s function atv50, that
is, the boundary becomes transparent. The TM reflection
efficient does not have this property.

We have redone the calculation to find the reduc
Green’s function in the interior region, 0,z,z8,a. We find

gH~z,z8!5
1

2k3
H e2k3uz2z8u1

k32k1

k31k1
e2k3(z1z8)

1d21Fek3(z2z8)1ek3(z82z)1
k31k1

k32k1
ek3(z1z8)

1
k32k1

k31k1
e2k3(z1z8)G J . ~C5!

Again, it is easy to see that we obtain only the free Gree
function for the zero mode:
6-15
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gH~z,z8;v50!5
1

2k
e2kuz2z8u, ~C6!

provided lim
v→0

v2e(v)50.

A check of this result is that if we substitute Eq.~C5! into
the expression for the force per area~3.13! of Ref. @1#, we
get the following for the TE contribution to the force@see Eq.
~3.10! there#:

F T5
i

2E dv

2p

~dk!

~2p!3
~e22e3!v2gH~a,a!

5
i

2E dv

2p

~dk!

~2p!3
~k32k212k3d21!, ~C7!

identical to the first term in Eq.~3.19! of Ref. @1#, and apart
from a contact term is the same as the second term in
~3.1!. All of this does not seem to support the claims
Klimchitskaya and co-workers@6–8,38# that there is some
thing ill defined about thev50 limit.

APPENDIX D: TEMPERATURE DEPENDENCE
OF THE RELAXATION FREQUENCY FOR GOLD

To investigate the temperature dependence of the re
ation frequencyn(T) in the Drude relation

«~ i z,T!511
vp

2

z@z1n~T!#
~D1!

for gold, it is convenient to make use of the Bloch-Gru¨neisen
formula for the temperature dependence of the electrica
sistivity r @49#:

r~T!5CS T

Q D 5E
0

Q/T x5ex dx

~ex21!2
. ~D2!

It is known thatQ5175 K for gold. The constantC can be
determined from the knowledge thatr52.2031028V m at
temperature 295 K@50#. We obtainC55.3231028V m.

The theoretical relationship betweenn and the static re-
sistivity r is

n5
f 0Nee

2

m
r, ~D3!
of

ep

05611
q.
f
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e-

whereNe is the number density of atoms,f 0Ne with f 0;1 is
the number density of free electrons, andm is the effective
electron mass. The simplest way to proceed is to pun
5Kr with K a constant, and make use of the room
temperature data of Eq.~4.16!. We obtain K51.59
3106 eVV21 m21. Altogether,

n~T!50.0847S T

Q D 5E
0

Q/T x5ex dx

~ex21!2
, ~D4!

where the unit ofn(T) is eV. The temperature variation i
shown in Fig. 6. For low temperatures,n(T)}T5, whereas at
high temperatures,n(T)}T. The curve is seen to be simila
to the one given in Fig. 3 of Ref.@9#, in the case of alumi-
num.

An important caveat must be mentioned, however; th
formulas neglect the effect of impurities, which give rise to
nonzero resistivity at zero temperature@51#. This makes the
use of these ideal resistivity models questionable, and a
further evidence that the behavior of the entropy discusse
Sec. IV is correct.

FIG. 6. Temperature dependence of the relaxation frequency
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